Hye guys.. today i want to explain about
memory.. memory have two type.. first is Read Only Memory(Rom). Do you know how
ROM be functionallity? A computer system must have ROM unit for bootstrap
program,for vector adresses for the interrupt and basic i/o system (BIOS).. do
you know what i/o..? ahaaa.. i/o means input/output laaa.. ok we let’s go to
continue.. Actually ROM unit is use for storing ROM
image and flas to save non-volatile data and results. ROM also use for language
specific bits for the fonts corresponding to each character to a printer or
display unit. Ok..For implement instruction, CISC as a control Rom at
microprogrammed unit.
For your information, ROM have 6 type..wow..so many..ahaahaaa.. ok for the first type is MASKED ROM.. masked rom? What that? Masked rom is use for large scale manufacturing and also prepare for foundry... Let go to the second type of ROM is... EPROM.. what EPROM? You don’t know EPROM? Alright.. i will explain that.. EPROM stands for ERASABLE PROGRAMMABLE READ ONLY MEMORY. It's basically a computer chip that can have information programmed onto it.. which is they stays on the chip even when the power is turned off (unlike RAM which is erased when you turn the computer off) The EPROM can be re-programmed by erasing the current information and re-writing new information to it. Ok you get it? I hope so..hehe.. Third type of ROM is EEPROM.. i know you will ask me what EEROM right??.. EEPROM stands for ELECTRICALLY ERASABLE PROGRAMMABLE READ ONLY MEMORY. It's a long name for a small chip that holds bits of data code that can be rewritten and erased by an electrical charge, one byte at a time. Its data cannot be selectively rewritten, the entire chip must be erased and rewritten to update its contents. Ok now you know about that right? Lets go to the next type of ROM.. Fourth type is FLASH memory.. ok a flash memory is function as the ROM. Flash memory refers to a particular type of electronically erasable programmable read-only memory (EEPROM). It is a computer memory chip that maintains stored information without requiring a power source. It is often used in portable electronics, such as digital music devices, smartphones and digital cameras, as well as in removable storage devices. This technology also is useful for computer basic input/output systems (BIOS), Personal Computer Memory Card International Association (PCMCIA) cards, modems and video game cards. will continue... wait..
created by : norsazilah binti muhammad
Pipelining
Pipelining is technology that improves instruction execution speed by putting the steps into parallel.
Execution phases of an instruction for a processor with a 5 step classic pipeline are as follows:
- FETCH : retrieves the instructio from the cache.
- DECODE:decodes the instruction and looks for operands (register or immediate values)
- EXECUTE:performs the instruction(for example,if it is an ADD instruction,addition is performed,if it is a SUB instruction,subtraction is performed.
- MEMORY:accesses the memory, and writes data or retrives data from it.
- WRITE BACK(retire):records the calculated value in a register.
Archanaa Arunasalam
B031110428
by: Norsazilah Binti Muhammad
INSTRUCTION EXECUTION
ZARIFAH BINTI HASHIM
1BITM S1G2
B031210147
PERFORMANCE
The performance or speed of a processor depends on the clock rate (generally given in multiples of hertz) and the instructions per clock (IPC), which together are the factors for the instructions per second (IPS) that the CPU can perform. Many reported IPS values have represented "peak" execution rates on artificial instruction sequences with few branches, whereas realistic workloads consist of a mix of instructions and applications, some of which take longer to execute than others.
The performance of the memory hierarchy also greatly affects processor performance, an issue barely considered in MIPS calculations. Because of these problems, various standardized tests, often called "benchmarks" for this purpose—such as SPECint – have been developed to attempt to measure the real effective performance in commonly used applications.
Processing performance of computers is increased by using multi-core processors, which essentially is plugging two or more individual processors (called cores in this sense) into one integrated circuit. Ideally, a dual core processor would be nearly twice as powerful as a single core processor. In practice, however, the performance gain is far less, only about 50%, due to imperfect software algorithms and implementation.
Increasing the number of cores in a processor (i.e. dual-core, quad-core, etc.) increases the workload that a computer can handle. This means that the processor can now handle numerous asynchronous events, Interrupts, etc. which can take a toll on the CPU (Central Processing Unit) when overwhelmed. It is best to think of these numerous cores as different floors in a processing plant, with each floor handling a different task. Sometimes, these cores will handle the same tasks as cores adjacent to them if a single core is not enough to handle the information to prevent a crash.
The performance of the memory hierarchy also greatly affects processor performance, an issue barely considered in MIPS calculations. Because of these problems, various standardized tests, often called "benchmarks" for this purpose—such as SPECint – have been developed to attempt to measure the real effective performance in commonly used applications.
Processing performance of computers is increased by using multi-core processors, which essentially is plugging two or more individual processors (called cores in this sense) into one integrated circuit. Ideally, a dual core processor would be nearly twice as powerful as a single core processor. In practice, however, the performance gain is far less, only about 50%, due to imperfect software algorithms and implementation.
Increasing the number of cores in a processor (i.e. dual-core, quad-core, etc.) increases the workload that a computer can handle. This means that the processor can now handle numerous asynchronous events, Interrupts, etc. which can take a toll on the CPU (Central Processing Unit) when overwhelmed. It is best to think of these numerous cores as different floors in a processing plant, with each floor handling a different task. Sometimes, these cores will handle the same tasks as cores adjacent to them if a single core is not enough to handle the information to prevent a crash.
by: Norsazilah Binti Muhammad
Transistor
Untuk memproses maklumat, mikropemproses mempunyai sekumpulan arahan, yang dipanggil "set arahan", dilakukan oleh litar elektronik.Lebih tepat lagi, set arahan dibuat dengan bantuan semikonduktor, sedikit "litar suis" yang menggunakan kesan transistor.
Satu transistor (penguncupan perintang pemindahan) adalah semi-konduktor elektronik komponen yang mempunyai tiga elektrod dan mampu mengubah arus yang mengalir melalui menggunakan satu elektrod (dipanggil kawalan elektrod). Ini adalah dirujuk sebagai "komponen aktif", Berbeza dengan "komponen pasif", seperti rintangan atau kapasitor yang hanya mempunyai dua elektrod (dirujuk sebagai "bipolar").
Tahukah anda..?
Transistor MOS (metal, oxide, silicone) adalah jenis yang paling biasa transistor digunakan untuk merekabentuk litar bersepadu. Transistor MOS mempunyai dua kawasan bercas negatif, sumber masing-masing dipanggil (yang mempunyai caj yang hampir sifar) dan longkang (yang mempunyai caj 5V), dipisahkan oleh rantau bercas positif(+ve), dipanggil substrat. Substrat mempunyai overlay kawalan elektrod, dipanggil pintu, yang membolehkan pertuduhan akan digunakan untuk substrat.
Transistor MOS (metal, oxide, silicone) adalah jenis yang paling biasa transistor digunakan untuk merekabentuk litar bersepadu. Transistor MOS mempunyai dua kawasan bercas negatif, sumber masing-masing dipanggil (yang mempunyai caj yang hampir sifar) dan longkang (yang mempunyai caj 5V), dipisahkan oleh rantau bercas positif(+ve), dipanggil substrat. Substrat mempunyai overlay kawalan elektrod, dipanggil pintu, yang membolehkan pertuduhan akan digunakan untuk substrat.
Apabila tiada caj ke atas elektrod kawalan, substrat yang bercas positif bertindak sebagai penghalang dan menghalang pergerakan elektron dari sumber ke dalam longkang. Walau bagaimanapun, apabila pertuduhan digunakan untuk pintu, caj positif substrat yang ditolak dan komunikasi bercas negatif saluran dibuka di antara sumber dan salir.
Transistor itu bertindak sebagai suis diprogramkan, terima kasih kepada elektrod kawalan. Apabila pertuduhan digunakan untuk elektrod kawalan, ia bertindak sebagai Interrupter tertutup dan, apabila terdapat tiada caj, ia bertindak sebagai Interrupter terbuka.
Litar Bersepadu
Apabila digabungkan, transistor boleh membuat litar logik, bahawa, apabila digabungkan bentuk pemproses,.
Transistor MOS itu diperbuat daripada kepingan silikon (dipanggil wafer) yang diperolehi selepas proses pelbagai. Ini keping silikon dipotong kepada unsur-unsur segi empat tepat untuk membentuk "litar". Litar kemudiannya diletakkan di dalam kes-kes dengan input-output penyambung dan jumlah bahagian-bahagian ini membuat "litar bersepadu". Minuteness ukiran, yang ditulis dalam mikron (mikrometer, Âμm ditulis) mentakrifkan bilangan transistor seunit permukaan. Terdapat boleh berjuta-juta transistor pada satu pemproses tunggal.
Pemprosesan Selari
Pemprosesan selari terdiri serentak melaksanakan arahan daripada program yang sama pada pemproses yang berbeza. Ini melibatkan membahagikan program ke dalam proses pelbagai dikendalikan secara selari untuk mengurangkan masa pelaksanaan.
Jenis ini teknologi, bagaimanapun, memerlukan penyegerakan dan komunikasi antara pelbagai proses, seperti pembahagian tugas dalam perniagaan: kerja terbahagi kepada proses diskret kecil yang kemudiannya dikendalikan oleh jabatan-jabatan yang berbeza. Operasi perusahaan boleh terjejas apabila komunikasi antara perkhidmatan tidak berfungsi dengan betul.
Posted by Nur Azimah Binti Daud (B031210187)
No comments:
Post a Comment